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Measurement of global and local resonance terms
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Recently, resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC
from the Fourier spectrum of beam position monitor (BPM) data. Based on these measurements a new
analysis has been derived to extract truly local observables from BPM data. These local observables are
called local resonance terms since they share some similarities with the global resonance terms. In this
paper we derive these local terms analytically and present experimental measurements of sextupolar
global and local resonance terms in RHIC. Nondestructive measurements of these terms using ac dipoles
are also presented.
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I. INTRODUCTION AND THEORY

In [1] normal form and Lie algebra techniques were used
to describe the motion of a particle confined in an accel-
erator in the presence of nonlinearities. The particle posi-
tion x1 as a function of the turn number N at a certain
location (indexed by 1) was given the following form,

x1�N� �
��������
�x1

p
Re
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ei�2��xN� x1 �

� 2i
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where Ix;y are the horizontal and vertical actions, �x;y are

the tunes,  x1;y1 are the initial phases, and f�1�jklm are the
generating function terms. The generating function terms
are directly related to the Hamiltonian terms h�1�jklm as
follows:

f�1�jklm �
h�1�jklm

1� e�i2���j�k�Qx��l�m�Qy�
: (2)

In [2] it was found that these terms experience a character-
istic variation around the accelerator lattice: their ampli-
tude remains constant in sections free of multipoles and
shows abrupt jumps at the locations of these sources. The
analytical expression describing these abrupt changes is
given by
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where f�2�jklm is the generating term at a second location,
��x;y are the horizontal and vertical phase advances be-
tween the two locations, the summation extends only over
the multipoles placed between the two locations,�xq;yq are
the phase advances between the first location and the qth
multipole, and hqjklm are real quantities proportional to
the strength of the qth multipole and to the product
��j�k�=2
xq ��l�m�=2

yq ; see [3] for a more detailed expression.
In [2] the measurement of amplitudes and phases of

generating function terms was successfully achieved at
two accelerators: the CERN SPS and the BNL RHIC.
This measurement together with Eq. (3) opens the possi-
bility of measuring magnet strengths. Indeed, if there is
only one multipole between the two locations 1 and 2, its
strength can be directly inferred knowing the betatron
functions. Nevertheless there are two limitations to this
approach: (1) The existence of several multipoles between
the two locations avoids the measurement of particular
strengths. When this is the case an integrated strength is
obtained, namely the summation in Eq. (3). (2) The mea-
surement of fjklm at one location needs two beam position
monitors (BPMs) with a phase advance different from 0	

and 180	, for the momentum reconstruction. If nonlineari-
ties exist between these two BPMs, fjklm can be measured
only up to an error on the order of the strength of these
nonlinearities. This error is usually smaller than fjklm but
would not be negligible when measuring magnet strengths.

The first limitation is unavoidable given the BPM con-
figuration. The second one is overcome by adopting an-
other approach using three BPMs. This new method
follows.

Three BPM method

Assume that Fig. 1 represents the BPM and multipole
configuration of a certain segment of an accelerator. The
1-1  2005 The American Physical Society



FIG. 1. Segment of an accelerator lattice. BPMs and multi-
poles are shown with their relevant Twiss parameters.
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relevant beta functions (�) and phase advances (� for
magnets and  for BPMs) are shown in the figure.

For convenience �1 and �2 have been introduced as the
deviation from 90	 of the phase advance between consecu-
tive BPMs. The only constraint imposed on these quantities
is that cos��1;2� � 0. This is to avoid zero denominators in
the equations below. A local observable is constructed
from the BPMs’ turn-by-turn signals as follows,

��N� �
x̂1�N�
cos�1

� x̂2�N��tan�1 � tan�2� �
x̂3�N�
cos�2

; (4)

where the hat means that the signal has been normalized to
the amplitude of the fundamental betatron oscillation.
These amplitudes and the phase advances �1 and �2 are
obtained from the Fourier transform of the signals. For an
ideal uncoupled linear machine, ��N� � 0 for any N and
for any set of three BPMs. Furthermore, in the presence of
multipoles distributed around the ring, ��N� only depends
on those nonlinearities placed between the three BPMs.
The analytical proof of these statements and the following
expressions is given in Appendix A. The equation that
relates ��N� and the local sources is given by

��N� � 4
X

j>k;l>m

jj�jklmj�2Ix�
�j�k�2�=2�2Iy�

�l�m�=2

� cos���1� j� k��x � �m� l��y�2�N �  jklm�;

(5)

where the local terms �jklm and the phases  jklm are
defined as

�jklm �
Xn0
q�1

ei��1�j�k��xq��m�l��yq� SEN��xq�hqjklm ;

 jklm � �1� j� k� x1 � �m� l� y1 � arg��jklm�;

(6)

where the summation extends over the multipoles in be-
tween the three BPMs, hqjklm are the quantities proportional
to the strengths already introduced in Eq. (3), and the
function SEN��xq� is defined as(

sin�xq

�����������������������
1� tan2�1

p
if �xq <  2 �  1

sin��xq � �1 � �2�
�����������������������
1� tan2�2

p
if �xq >  2 �  1:

(7)

Note that the above expressions largely simplify
02400
when �1 � �2 � 0, giving ��N� � x̂1�N� � x̂3�N� and
SEN��xq� � sin�xq. This situation corresponds to two
BPMs separated by exactly 180	.

We have constructed a local observable ��N� that de-
pends both on local magnet strengths and the distribution
of the three BPMs. The Fourier coefficients of this observ-
able provide the local terms �jklm, which are similar to the
Hamiltonian terms but strictly local. There is a fundamen-
tal difference between the local and the global resonance
terms: the global terms are related to only one resonance
while the local terms are related to two resonances; see
Appendix A 1. This is due to the fact that ��N� is a real
quantity as opposed to the traditional complex variable
used to derive the global resonance terms. As a conse-
quence, the numbers of independent spectral lines and
local terms are reduced to a half. In accordance, the sum-
mation of Eq. (5) extends only over j > k and l > m. The
measurement of the local terms represents a means of
finding lattice imperfections or unexpected multipoles in
an accelerator.

II. RHIC MODEL

In order to compare results from the measurements of
sextupolar components to predictions, a MADX model of
the RHIC yellow injection lattice has been constructed.
The interaction regions (IRs) have been modeled as de-
scribed in [4] using the corresponding magnet measure-
ments. Some dipoles in the IRs do not have magnetic
measurements. No sextupolar components have been
assumed for them. The arcs contain the chromaticity sextu-
poles and the sextupolar components of the superconduct-
ing dipoles. The arc dipoles have been sliced into eight
slices and the corresponding sextupolar multipoles have
been placed in between.

III. RHIC EXPERIMENTS

During 2004 RHIC gold operation experiments to mea-
sure magnet strengths from BPM data were carried out in a
similar way as in [5]. Transverse betatron oscillations were
excited either by injecting off orbit or by driving forced
oscillations with the aid of an ac dipole. 1024 turn-by-turn
BPM data were recorded after every transverse excitation.
All experiments were performed at injection energy. The
tunes were moved closer to the third order resonance to
enhance the sextupolar resonances, Qx � 0:31 and Qy �

0:22. Chromaticities were Q0
x;y � �2 units, where the

prime denotes the derivative with respect to the relative
momentum deviation. For the presented measurements no
IR correction circuits were used.

Prior to the data analysis the malfunctioning BPMs were
removed as reported in [6]. Yet a new failure mode of the
BPM system had to be pursued: few BPMs report on a
different turn number than the rest. To find these faulty
BPMs the phase advance between consecutive BPMs as
1-2
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FIG. 3. (Color) Measurement of j�3000j from kick data. The top
plot shows the beta beating. The middle plot shows j�3000j
around the ring with a comparison to the model. The bottom
plot shows the sextupolar components of the ring.
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measured from the Fourier transform is compared to that
predicted by the model. Those few BPMs having a larger
deviation from the model than the rest were rejected.

A. Measurement of �3000 from kick data

The measurement of �3000 is performed in a similar way
to that of f3000 as described in [2]. It is interesting to note
that the term �1200 does not exist in Eq. (5) as opposed to
f1200 that is also measurable. The contribution of this local
term to ��N� is given by

12j�3000j�2Ix�1=2 cos�4��xN �  3000�: (8)

To measure j�3000j a line constrained to go trough the
origin is fitted to the amplitude of the spectral line with
frequency �2�x [line ��2; 0�] from the Fourier spectrum
of ��N� versus

�������
2Ix

p
. Using the line �2; 0� would give

identical results since ��N� is a real quantity. An example
of this fit is shown in Fig. 2 for a particular set of three
BPMs. The quality of the data is poor at the lower oscil-
lation amplitudes since we are measuring a small quantity.
The measurement of even smaller quantities would need
either larger oscillation amplitudes or the analysis of lon-
ger samples of undecohered data, obtained, for instance,
with an ac dipole as will be explained below.

�������
2Ix

p
is

measured from the peak-to-peak amplitude of the BPM
readings and from a measurement of the beta functions
throughout the ring. The measurement of these functions
relies on the betas predicted from the RHIC model. The
final error of

�������
2Ix

p
is shown in the figure. The effect of

beam decoherence has to be taken into account as de-
scribed in [2]. If the centroid oscillations are damped due
to amplitude detuning, the line �n; 0� is reduced by a factor
of jnj. The line ��2; 0� is therefore reduced by a factor of 2.
j�3000j is given by one sixth [from Eq. (8) and taking into
account the factor of 2 from decoherence].

The measurement of j�3000j around the RHIC yellow
ring is shown in the central plot of Fig. 3 with a comparison
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FIG. 2. (Color) Amplitude of the spectral line with frequency
�2�x [line ��2; 0�] from the Fourier spectrum of ��N� versus�������
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to the model. The horizontal error bars are used to delimit
the segment of the lattice occupied by the three BPMs
(vertical lines are also used at the edges of the segment).
The central dot corresponds to the location of the middle
BPM. Model and experiment show good agreement in the
arcs. Discrepancies arise in the IRs partly due to the fact
that the model is not complete in these regions. The top
plot of the figure shows the measured beta beating with
respect to the model. The bottom plot shows the distribu-
tion of the sextupolar components used in the model.

B. Measurements using an ac dipole

An ac dipole drives transverse beam oscillations at a
frequency close to the betatron tune. The nondestructive
measurement of resonance driving terms using an ac dipole
was proposed in [7]. The main finding of this paper was
that the resonance driving terms in the presence of an ac
dipole, f0jklm, differ from the natural resonance driving
terms fjklm in a quantity that increases with the separation
of the driving and the betatron tunes.
f0jklm has been measured for the first time around the

RHIC yellow lattice. The betatron horizontal tune was
Qx � 0:31 and the driving tune of the ac dipole was set
toQD � 0:32. The ac dipole was adiabatically switched on
and off at various excitation amplitudes in order to be able
to measure f0jklm as proposed in [7]. The measurement is
shown in Fig. 4 together with a prediction from the model.
The horizontal error bars delimit the locations of the two
BPMs. The few points that show a discrepancy have a large
horizontal error bar. This large separation of the BPMs
compromises the reconstruction of the momentum, intro-
ducing an error of the order of the nonlinearities within this
region, as shown in Eq. (A6).
1-3
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FIG. 5. (Color) Measurement of j�3000j with an ac dipole. The
bottom plot shows the sextupolar components of the ring.
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FIG. 4. (Color) Measurement of jf03000j with an ac dipole. The
bottom plot shows the sextupolar components of the ring.
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In Appendix B it is demonstrated that under certain
assumptions the amplitude of the measured local resonance
terms is independent of the nature of the beam oscillations,
i.e., free oscillations or driven by using an ac dipole.
Consequently, we have measured j�3000j proceeding in
the same way as in the previous section but using ac dipole
data. This method has the advantage that no decoherence
factor has to be taken into account since the oscillations are
not damped. The result is shown in Fig. 5. The agreement is
02400
similar or better than for the kick case. This demonstrates
the feasibility of this kind of measurement.

IV. CONCLUSION

The BPM-based observables ��N� and �jklm have been
defined. Up to first order in the nonlinearities of the lattice
these observables only depend on the sources placed in
between the three BPMs used. The sextupolar local term
�3000 has been measured around RHIC from both free
oscillation data and driven oscillation data by using an ac
dipole. The sextupolar generating function term has also
been measured using an ac dipole for the first time.
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APPENDIX A: PROOF OF THE PROPERTIES
OF ��N�

��N� is defined from the turn-by-turn horizontal beam
positions at three arbitrary locations as

��N� �
x̂1�N�
cos�1

� x̂2�N��tan�1 � tan�2� �
x̂3�N�
cos�2

: (A1)

For convenience ��N� is expressed in terms of complex
variables as

��N� � ei�1�x̂1�N� � ip12�N�� � i�x̂2�N� � ip23�N��;

(A2)

where prt�N� is the reconstructed momentum from the
coordinates x̂r�N� and x̂t�N� defined as

prt�N� � �x̂t�N� � x̂r�N� sin�r�= cos�r: (A3)

We aim to express��N� as a function of the sources located
in between the three BPMs up to first order. To this aim
Eqs. (1) and (3) are used to perform the appropriate sub-
stitutions in three main steps: (1) computation of the
reconstructed momentum, (2) computation of the complex
variable, and (3) computation of ��N�. In the following
each step is reported in one section.

1. Computation of p12

Using Eq. (1) the reconstructed momentum of Eq. (A3),
for instance p12, is given by
p12 � tan�1 Re

(
ei�2��xN� x1 � � 2i

X
jklm

jf�1�jklm�2Ix�
�j�k�2�=2�2Iy�

�l�m�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��

)

�
1

cos�1
Re

(
ei�2��xN� x2 � � 2i

X
jklm

jf�2�jklm�2Ix�
�j�k�2�=2�2Iy��l�m�=2e

i��1�j�k��2��xN� x2 ���m�l��2��yN� y2 ��

)
: (A4)
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After some algebra the reconstructed momentum yields

p12 � cos�2��xN �  x1 � �=2� �
2

cos�1
Re

(
i
X
jklm

j�f�1�jklm sin�1 � f�2�jklme
i�1�j�k���=2��1��i�m�l�� y2� y1 ��

� �2Ix�
�j�k�2�=2�2Iy�

�l�m�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��

)
: (A5)

Using Eq. (3) the quantity between the square brackets of this equation is expressed as

f�1�jklm sin�1 � f�2�jklme
i�1�j�k���=2��1��i�m�l�� y2� y1 � � f�1�jklm sin�1 �

"
f�1�jklm �

Xn
q�1

ei�k�j��xq�i�m�l��yqhqjklm

#
ei��=2��1�;

p12 is then given by

p12 � cos�2��xN �  x1 � �=2� � 2
X
jklm

�2Iy�
�l�m�=2 Re

(
j

"
f�1�jklm �

ei�1

cos�1

Xn
q�1

ei�k�j��xq�i�m�l��yqhqjklm

#

��2Ix��j�k�2�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��

)
: (A6)

This reconstructed momentum differs from the real momentum at the first location only by the term containing the
summation over the local sources in between the square brackets. Therefore this expression can also be used to estimate the
error in the reconstruction of the momentum from two BPMs when nonlinear sources are placed in between. But this
‘‘error’’ is indeed the part of the equation we are most interested since it is truly local. An equivalent expression is obtained
for p23 by replacing the indexes in this equation. The summation over the sources would expand over the sources placed
between the second and third locations, say there are n0 sources.

2. Computation of the complex variable

The next step is to compute the complex variable defined as x̂1�N� � ip12�N�, which by using Eqs. (1) and (A6) takes the
form

x̂ 1�N� � ip12�N� � ei�2��xN� x1 � � 2i
X
jklm

jf�1�jklm�2Iy�
�l�m�=2�2Ix��j�k�2�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��

� iRe

(
�2i

X
jklm

Xn
q�1

jei�k�j���xq��=2��i�m�l���yq���y�hqjklm�1� i tan�1��2Ix�
�j�k�2�=2

��2Iy�
�l�m�=2ei��1�j�k��2��xN� x2 ���m�l��2��yN� y2 ��

)
: (A7)

Using that Refag � �a� a��=2 for any complex number a, the complex variable can be expressed in the following way:

x̂ 1�N� � ip12�N� � ei�2��xN� x1 � � 2i
X
jklm

jf�1�jklm�2Ix�
�j�k�2�=2�2Iy��l�m�=2e

i��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��; (A8)

where f�1�jklm is given by

f�1�jklm � ei��1�j�k�� x2� x1 ���m�l�� y2� y1 ��

"
�
i
2

Xn
q�1

ei�k�j���xq��=2��i�m�l���yq���y�hqjklm�1� i tan�1�

�
i
2

Xn
q�1

j0

j
e�i�k

0�j0���xq��=2��i�m0�l0���yq���y�hqj0k0 l0m0 �1� i tan�1�

#
;

and the new indexes with the prime are to fulfill

1� j0 � k0 � ��1� j� k�; m0 � l0 � ��m� l�; j0 � k0 � j� k; m0 � l0 � m� l: (A9)
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Therefore, m0 � l, l0 � m, k0 � j� 1, and j0 � k� 1. The term hqjklm is proportional to the factor

�j� k�!
j!k!

: (A10)

By virtue of these relations we have

hqj0k0 l0m0 �
j

k� 1
hqjklm : (A11)

Using the above relations and that

1� i tan�1 �
�����������������������
1� tan2�1

q
e�i�1 ; (A12)

f�1�jklm is expressed as

f�1�jklm � f�1�jklm �
�����������������������
1� tan2�1

q Xn
q�1

ei�1�k�j��xq�i�m�l��yq cos��xq � �1�hqjklm: (A13)

f�1�jklm can be regarded as the generating function term with an error due to the nonlinear sources placed in between the two
locations used to reconstruct the momentum. Again, this error is the interesting part of the equation for us. f�2�jklm can be
obtained by replacing the index 1 by 2 and including in the summation only the sources placed between the second and the
third location.

3. Computation of ��N�

Using Eqs. (A2) and (A8) ��N� is expressed as

��N� � ei�2��xN� x1��1� � 2iei�1
X
jklm

jf�1�jklm�2Iy�
�l�m�=2�2Ix��j�k�2�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��

� ei�2��xN� x2���=2�� � 2iei��=2�
X
jklm

jf�2�jklm�2Iy�
�l�m�=2�2Ix��j�k�2�=2ei��1�j�k��2��xN� x2 ���m�l��2��yN� y2 ��: (A14)

The purely exponential terms cancel out and all the remaining monomials are proportional to the resonance terms,

��N� � �2iei�1
X
jklm

j�f�1�jklm � f�2�jklme
i��k�j���=2��1���m�l�� y���2Iy�

�l�m�=2�2Ix�
�j�k�2�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��:

(A15)

Using Eqs. (A13) and (3) the quantity in between the large brackets is expressed as

f�1�jklm � f�2�jklme
i��k�j���=2��1���m�l�� y� � ie�i�1

Xn0
q�1

ei�1�k�j��xq�i�m�l��yq SEN��xq�hqjklm; (A16)

where the function SEN was already introduced in Eq. (7). The summation extends now over all the sources placed in
between the three BPMs. The resonance driving terms have canceled out and only the contribution from the sources placed
in between the BPMs remains. This proves that ��N� is a local observable. It is trivial to see that if there are no local
sources (hqjklm � 0) ��N� is zero. ��N� is then given by
024001-6
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��N� � 2
X
jklm

Xn0
q�1

jei�1�k�j��xq�i�m�l��yq SEN��xq�hqjklm�2Iy�
�l�m�=2�2Ix��j�k�2�=2ei��1�j�k��2��xN� x1 ���m�l��2��yN� y1 ��:

(A17)
The complex conjugate of each monomial of this summa-
tion is also contained in the summation as can be seen by
applying again Eq. (A9). Therefore ��N� finally takes the
form of Eq. (5). QED.

APPENDIX B: LOCAL RESONANCE TERMS IN
THE PRESENCE OF AN AC DIPOLE

The Hamiltonian resonance driving terms in the pres-
ence of an ac dipole are given by [7]

h0jk00 � h<jk00 � h>jk00e
i�k�j�1�2�Q� ; (B1)

where h<jk00 contains the contributions to hjk00 of all the
elements placed before the ac dipole and h>jk00 contains
those of the elements placed after. Q� is the difference
between the driving tune and the betatron tune. When Q�

tends to zero, h0jk00 tends to hjk00. Equation (1) can be used
to approximately describe the motion in the presence of an
ac dipole if the fjklm are replaced by f0jklm, the tunes are
replaced by the driving tunes, the excitation has been
ramped adiabatically, and the tunes are close to the reso-
nance QD � Qx. Under these assumptions we can proceed
with the same derivations as in the previous section taking
into account Eq. (B1). Ignoring the case when the three
BPMs used contain the ac dipole in between them there are
only two possibilities: (1) all the local sources are included
02400
in h<jk00 and (2) all the local sources are included in h>jk00
and will be multiplied by ei�k�j�1�2�Q� as Eq. (B1) states. It
is straightforward to conclude that in the first case �0

jk00 �

�jk00 and in the second case �0
jk00 � �jk00ei�k�j�1�2�Q� .

Therefore under the above assumptions the local resonance
terms measured from free oscillation and the local terms
measured using an ac dipole have the same amplitude.
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